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SUMMARY

The convective heat transfer properties of a commercial wedge hot-film probe
with a 40° semivertex angle are examined to determine its response in transonic and
low supersonic flows of high unit Reynolds number (i.e., 20 x 10% to 280 x 10° per
meter). The results of the study show that throughout this entire flow regime, the
probe response depends on free-stream Mach number and consequently shows a greater
sensitivity to velocity than to density fluctuations. The "local linearization
method" of Kovésznay and Morkovin is used to derive the wedge probe sensitivities to
the various modal fluctuations. To absorb the Mach number dependence, these sensi-
tivities are derived in terms of free-stream Reynolds number rather than stagnation
Reynolds number. The dependence of the probe sensitivities on the flow parameters
and temperature loading is then examined. This analysis shows that the probe density
sensitivity is only weakly dependent on temperature loading. This weak dependence
leads to irregular behavior in the solution for the modal fluctuations. A method is
recommended to solve for the modal fluctuations to within an arbitrary factor
depending on free-stream static pressure fluctuations. Both the frequency response
(130 kHz) and the durability of the probe are satisfactory, but the wedge probe
exhibits poor yaw directional response at sonic speeds.

INTRODUCTION

This paper examines the convective heat transfer properties of a commercial
wedge-shaped hot-film probe in the transonic to low supersonic flow regime. Of par-
ticular interest are those supersonic flows associated with the turbulent jet shear
layer at high unit Reynolds number (i.e., greater than 106 per meter) for which a
hot-wire probe has insufficient mechanical strength., This work originates from a
need to obtain turbulent flow details with high frequency response for the study of
sound generation from shock-free and shock-containing supersonic jets.

Ling and Hubbard (1956) introduced the wedge-shaped hot-film probe as a new
device for turbulent flow research., This probe consisted of a thin layer of platinum
film fused to a wedge-shaped glass surface. The probe was developed as a means for
studying flows for which hot-wire probes would be impractical, such as liquid and
high speed supersonic gas flows that require a probe with high mechanical strength.
Despite the high frequency response (100 kHz) obtained near sonic velocities by Ling
and Hubbard with their probe, the wedge hot-film probe received little attention in
high speed applications until the work of Glaznev (1973), who used a commercial ver-
sion of the wedge probe in a supersonic choked jet airstream.

While Glaznev did not directly specify how the probe voltage signal was inter-
preted in terms of the physical variables, the paper indicated that the procedure
used was the modal analysis method introduced by Kovasznay (1950 and 1953) and
Morkovin (1956) for the cylindrical hot-wire probe. Like Glaznev, our primary moti-
vation for using the wedge probe was an interest in obtaining relevant turbulent flow
components that could be used to improve understanding of the physical mechanisms
associated with noise production by high speed jet flows. However, initial calibra-
tion tests in the Iangley Jet-Noise Laboratory with a commercial hot-film wedge
probe, similar to Glaznev's, demonstrated that its response in supersonic flow was
significantly different from that observed for cylindrical type sensors. Thus, this



paper reports the results of a study whose purpose was to examine the supersonic
properties of wedge-shaped hot-film anemometry probes and to provide a means for
interpreting their voltage signal in terms of the physical variables,

_ The supersonic properties of the wedge hot-film probe were established by posi-
tioning a wedge probe at the exit of a supersonic nozzle. During the course of the
investigation, three nozzles were used with nominal exit Mach numbers of 1.0, 1.5,
and 2.0. ‘The results of these calibrations demonstrated that the wedge probe
response is Mach number dependent, but that this dependence can be absorbed when the
response is analyzed in terms of a Reynolds number based on the free-stream static
temperature, Cylindrical hot-wire probes are analyzed in terms of ‘a Reynolds number
based on stagnation temperature, and as previously shown by Laufer and McClellan
(1956) their response becomes independent of free-stream Mach number above 1.3.

This paper provides details of the calibration method used to determine the
response of the wedge probe in the high unit Reynolds number range of 20 X 10% to
280 x 10° per meter. In addition, sensitivity equations are derived which describe
the observed behavior of the probe. The derived sensitivity coefficients are exam-
ined to determine their dependence on the flow parameters (i.e., Mach and Reynolds
numbers) and temperature loading. Based on these results, a procedure is recommended
which can be used to interpret the measured bridge voltage fluctuations in terms of
the fluctuating flow variables. The wedge probe behavior is also compared with the
response of cylindrical hot-film sensors which were also examined using the same
calibration method. In this way, a fair estimation of the capabilities of the cali-
bration method could be related to prior research results, and an estimation of the
conduction end loss could be examined. The directional response of each probe type
is also briefly examined to establish capabilities of each probe for Reynolds stress
measurements using dual sensor configurations. A typical application of the wedge
probe to supersonic turbulent flow measurements can be found in Seiner and Yu (1981)
and Seiner, McLaughlin, and Liu (1982).

SYMBOLS
Aij probe transformation matrix (eg. (26))
A~ inverse matrix (eg. (27))
A(9) probe sensitivity to free-stream Reynolds number (eq. (28))
B(9) wedge hot-film probe intercept (eg. (28))
c sound speed
D probe diameter or wedge thickness (fig. 1)
Epse’ mean and fluctuating bridge voltage
Ej measured probe voltage array (eq. (26))
eé,eé pseudo voltages (eqs. (40) and (41))
f function defined by equation (30)
g ' function defined by equation (32)



h convective heat transfer coefficient

Ip probe current

k directional probe response parameter (eq. (44))
ko thermal conductivity of air

L length of film plating on cylinder or wedge

M Mach number

m d(1ln Bg) /4 (1ln T,)

Nu Nusselt modulus, th/ko

ng d(1ln ko)/d(ln Ib)

P,p! mean and fluctuating pressure

Qc'Qk convective and conductive heat transfer rate
Ry probe resistance at 293.15 K

Re Reynolds number, pUD/p

RL'Rp'Rr leads, probe, and recovery resistance
Sp'su'ST'Sp probe sensitivity to density, velocity, temperature, and pressure
TO,Té mean and fluctuating stagnation temperatures
Tp,Tr,TCD probe, recovery, and free-stream temperatures
g,u’ mean and fluctuating free-stream velocity

Xj unknown variable array (eq. (26))

a film resistance temperature coefficient

oy coefficient defined by equation (22)

oy coefficient defined by equation (23)

Y ratio of specific heats

£ = Q/(Q + Q.)

n temperature recovery ratio, T,./T,

0 overheating parameter, Tp/To

1 absolute viscosity

0:p' mean and fluctuating free-stream density



T temperature overheat (eq. (4))

Tor temperature loading (eq. (24))
¢ probe yaw angle

Subscripts:

a ambient value

o stagnation condition

ref reference quantity

® free-stream value

A bar over a symbol denotes time average.

HOT-FILM PROBES AND CALIBRATION PROCEDURE

Four hot-film probes (three wedge shaped and one cylindrical) were used 'in this
study. Schematic diagrams of these commercial probes are shown in figures 1 and 2.
Table I lists several relevant properties of these probes,

All the probes listed in table I have a 1000-A layer of nickel sputtered on a
glass substrate. The thin nickel film serves as the heat source medium for heat
transfer to the fluid medium, analogous to the fine wire of a hot-wire probe., Since
these probes were designed for use in liquid flows, they have a thin outer protective
layer of quartz deposited over the nickel to prevent electrical shorts. In high
speed gas flows, this layer protects the nickel against abrasive contaminants which
can lead to early probe burnout. The probes in table I have a 2,0-um outer protec-
tive quartz coating except for probe W which has a 0.5-um coating. Probe frequency
response is inversely proportional to the thickness of the protective quartz coating.

The supersonic properties of the wedge probes were established by locating a
probe at the exits of different supersonic nozzles where the flow is essentially
uniform and turbulence free, Three supersonic nozzles with design exit Mach numbers
of 1.0, 1.5, and 2.0 were operated in and around their design point. These nozzles
have respective exit diameters of 3,962, 4.268, and 4.989 cm. For a given supersonic
nozzle and constant supply temperature, there is a nozzle pressure ratio range around
the design point where the jet exit velocity remains constant. 1In this range, a
linear variation of the nozzle pressure ratio produces a proportionally linear varia-
tion in the jet exit density. This is true for all nozzle pressure ratios producing
underexpanded flow or producing overexpanded flows without a normal shock. This
nozzle exit condition is summarized in figure 3, which shows the measured variation
of the mean mass flux at the exit for each of the three nozzles. These data are
normalized by the mean mass flux (pU) obtained when operating each nozzle at its

design point,.

ref

The data of figure 3 bracket the entire test range for the hot-film probe cali-
brations. The data were established by measurement of the exit stagnation and static
pressure and the supply stagnation temperature. The small region in figure 3 showing
a nonlinear variation of mass flux with pressure ratio was obtained by operating the
Mach 1.0 nozzle at subcritical pressure ratios. Thus in this subsonic range, probe
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calibrations were obtained with a constant jet exit density and a variable exit
velocity. The data of figure 3 show that with this method of calibration, it is
possible to obtain a 10 to 1 variation of the parameters for probe calibration.

The response of anemometry probes is commonly expressed in terms of the non-
dimensional Nusselt modulus Nu, = h D/k,, where h, represents the convective heat
transfer coefficient and ko the gas thermal conductivity at stagnation conditions.
The Nusselt modulus is a measure of the heat transferred by the probe to the sur-
rounding fluid medium by convection. For probes that have a small aspect ratio, a
significant amount of heat is also transferred by conduction to supporting members.
Using the end conduction loss corrections of Lord (1974), Ho, McLaughlin, and Troutt
(1978) have shown that in low Reynolds number supersonic flows, the sensor response
is often dominated by this component at low probe temperature overheats (i.e.,

0 =TT /T, near unity). The heat balance equation for constant-temperature ane-
mometer probes is given by

2
Ip Rp = Q. + O (1)

which simply expresses that ohmic heating in the absence of radiative heat losses is
balanced by convective O and conductive O heat transfer., Since most anemometry
sensors are rarely operated above 300°C, heat loss due to radiation is negligible,

The present investigation involves the study of the wedge-shaped hot-film ane-
mometer in high Reynolds number supersonic flows. In this flow regime, as shown in
the next section, the conductive heat transfer contribution is considerably smaller
than that due to convection. Under these conditions, probe end loss corrections are
small and ohmic heating is balanced principally by the convective heat transfer mode.
In terms of the Nusselt modulus Nu g and temperature recovery ratio (n = Tr/To)' the
ohmic heating is given by

2R - -
Ip RP = Q. = aLko(Tp - NT,)Nug (2)

where the parameter a 1is equal to 2 for a wedge probe and to 7 for a cylindrical
probe. In equation (2), T and Tj refer respectively to the probe temperature
and fluid stagnation temperature, From equation (2), the Nusselt modulus can be
expressed in terms of the probe electrical quantities as

aE R
Nuo = b T+ 1 r (3)

[R.(z+ 1) +Rr + 5012

where the temperature overheat, probe resistance, and probe current (for a 50-Q,
1-to-1 bridge) are given by

T = —F————— = a(Tp - "Tb) (4)
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I

R 01+ a(T - T )] (5)

Eb

P Rr(r + 1) + RL + 50

(6)

I

In equation (3), &, R., and Ry refer respectively to the measured anemometer
bridge voltage, the probe recovery resistance, and the leads resistance. The param-
eter «aq 1is the film resistance temperature coefficient. The Nusselt modulus and the
fluid thermal conductivity in equation (3) are referenced to the stagnation tempera-
ture. All heat transfer data presented in this paper are based on the Nusselt modu-
lus as determined from equation (3).

MEASURED HOT-FILM PROBE RESPONSE

When conduction end losses are negligible, Kovésznay (1953) and Morkovin (1956)
have shown that the heat transfer from a hot wire depends dimensionally on the flow
parameters as follows:

Nu, = Nu,(M,Re_, 6)

(7)

n = n(M,Re,)

where 0 = Tp/To is the overheating parameter and M is the free-stream Mach
number.

On the basis of this analysis, probe calibration results are customarily ana-
lyzed in terms of a Reynolds number based on stagnation temperature conditions
(i.e., Re, = pUD/p, ). As can be observed in Figure 4, the response of the cylin-
drical hot-film sensor, probe 3, compares favorably on this basis with the asymptotic
empirical heat transfer correlation derived by Behrens (1971) for hot-wire probes
with conduction end loss correction., As previously demonstrated by Laufer and
McClellan (1956) for lower cylindrical probe Reynolds numbers, this comparison shows
that the cylindrical probe response does not depend on Mach number when M > 1.3.
The results also show that at high probe Reynolds numbers, end conduction losses are
small in view of the agreement with Behren's asymptotic curve. This view is also
supported by the heat conduction estimate of the appendix. This estimate shows that
this mode accounts for no more than 7.5 percent of the total heat transferred and
that its influence diminishes with increasing probe Reynolds numbers. These results
agree with the data shown in figure 4 and suggest that conduction end losses can be
assumed small for the wedge probe because of similarities in the thermal properties
of the materials used in its construction,

Typical results for the wedge hot-film probe are shown in figure 5 for exit Mach
numbers of 1.00, 1.41, and 1.99., Unlike the behavior of the cylindrical probe, these
data definitely depend on free-stream Mach number when correlated with the stagnation
Reynolds number. Although these data are for probe Z of table I, all other wedge
probes exhibited a similar behavior in terms of the stagnation Reynolds number, This



behavior can be better understood by examining the dependence of the Nusselt modulus
directly on the physical variables.

From the same data set as in figure 5, the Nusselt modulus is correlated in
figure 6 with the free-stream density ratio (p/pa)1 2, Here p represents the
ambient density to which the supersonic jet exhausts. 1In this figqure, the free-
stream velocity appears as a parameter and is a constant for each of the three free-
stream Mach numbers, since the supply stagnation temperature is constant. This par-
ticular data correlation represents the method by which the data are actually
obtained from each supersonic nozzle. It is apparent from figure 6 that the Nusselt
modulus correlates well with (p/pa)1/2 when the free-stream velocity is held con-
stant. If the wedge probe had the same sensitivity to density as to velocity, the
data of figure 6 would correlate with (pU)1/2. However, as shown in figure 7, the
Nusselt modulus for the three Mach numbers correlates instead with po‘ U~ . This
behavior clearly suggests that the wedge hot-film probe exhibits greater sensitivity
to velocity than to density over the entire test range of this study. The signifi-
cance of this particular exponent of velocity is demonstrated below,

The Nusselt modulus represents a measure of the similarity between the hydro-
dynamic and thermal boundary layers by virtue of the dependence of the convective
heat transfer coefficient on the flow variables. It is of interest to note the
empirical relationship between the absolute gas viscosity and temperature as given by

m
o]

B/ Wy = (T /T.) (8)

Morkovin (1956) gives a value for m, of 0.765 for air temperatures between 270 K
and 350 K. Since the data of figure 7 correlate well with the same exponent for
velocity, a correlation of the wedge probe data with free-stream Reynolds number is
suggested as a means for incorporating the apparent Mach number effect:

m
(o]
Re = Reo(uo/um) = Reo(To/Tm) (9)

In equation (9), the relationship between the Reynolds numbers based on the free-
stream static (Re_) and stagnation (Reo) temperatures is modified by a term which
depends on the free-stream velocity outside the thermal boundary layer of the wedge
probe surface.

In figqure 8, the wedge film calibration data of figure 5 for probe Z, are pre-
sented in terms of free-stream Reynolds number. It is apparent that this parameter
correctly absorbs the Mach number dependence in the calibration data, and therefore
represents the appropriate manner by which to view these data. Figures 8(b)
and 8(c), for probes Y and W, demonstrate similar behavior with the free-stream
Reynolds number. The least square fits to the data in figures 8(a) through 8(c) show
small differences in operating performance. On this basis, the heat transfer from a
wedge-shaped hot-film probe would depend dimensionally on the flow parameters as
follows:

Nu = Na (Re ,0)
o] [o] o«
(10)

n = n(M,Re )



in contrast to the parametric dependence for cylindrical probes expressed by equa-
tion (7). 1In the following section, this parametric dependency on the flow variables
is used to derive the sensitivity coefficients for the wedge film probe, which are
similar to those derived by Morkovin for the cylindrical sensor.

ANALYSIS OF EXPERIMENTAL RESULTS
Wedge Hot-Film Sensitivity Coefficients

To obtain the fluctuating flow variables, variations in the anemometer output
must be expressed in terms of the flow variable fluctuations. On the basis of
Morkovin's analysis for cylindrical sensors, the fluctuating anemometer bridge volt-
age is customarily expressed in terms of density p, velocity U, and stagnation
temperature T_ ., By using equations (2) and (6), and noting that
d{ln[R /(R, + Ry + 50) ]} = 0 for constant-temperature operation, the bridge voltage
variations can be expressed in terms of the fluctuating flow variables as

a(in ) ~%'—=ld(1n o) (11)

b 2

since d(ln Eb) s AE /Eb’ The approximation in equation (11) is due to Kovésznay
(1953) and Morkovin ?1956) and is known formally as "the local linearization method."
As such, the approximation is only valid for those points in a flow where the local
turbulence intensity level is not high (i.e., less than 20 percent). The logarithmic
derivative of the convective heat transfer rate Q, can be determined from equa-
tion (2) as

Lang) =+ on M) -1 BUnm) [ 41n e )
2 no) =3 3(1n Re ) ® - n 3(ln Re ) noRe,
_f n 3@n g)]
216 - 7 3(in my| I M)
1- d3(1ln Nuo) .
+ E-no “ 3 (In 8 ~ 9 - a d(1ln Ib)
1 3(1ln Nuo) 0
+ = +

d(ln T ) (12)
p

2] 9(ln ©) e -

where d(ln 0) = d(ln Tb) - d(1n IB) and

d(ln k )
o

o d(ln T) (13)
o]

n




Morkovin gives a value of 0,885 for ng for air in the temperature range from 270 X
to 350 K. For constant-temperature anemometry, d(ln T ) = 0 by definition and is
not considered further. Equation (12) can be put in a %orm compatible with
Morkovin's cylindrical probe results by considering the relation

d(ln p) =m d(1ln Tm), which follows from equation (8), along with the following
useful relations:

d(ln Re ) = d(ln p) + d(1ln U) - m d(ln T ) (14)
(y - 1)M2
a(ln T ) = a(ln T ) Y a(ln M) (15)
© o 14 y -1 M2
2
Y- 1,2
d(ln ¢ ) = a(ln ¢ ) - 2 a(in M) (16)
© o ¥y -1 2
1 + 2 M
a U Y = 1 2 1
(Iln M) = 4d ln;— = 11 + 3 M} |d(1ln U) —-2-d(ln To) (17)

Substitution of the above relations in equation (12) produces the following heat
balance equation for balanced constant-temperature wedge probe anemometry:

o
T (18)

H

1
ulo_ g
U T

L)
o} u

Eb o]

o]

where the sensitivity coefficients are given by

1 8(1n Nuo) 1 3(ln 1)

P 2| 3(1n Rew) Ty 3(1ln Re )

(19)

g _1 . o(in Nuo) 1 ?(ln n) 1 d(ln 1)

u 2Y1}3(1ln Rem) Tor d3(1ln Rem) T . 3(1ln M)

(20)



N LICER N ! o(la m ] 1 3(ln Nu_)

S =2\¢ |3(In re ) T = 6(lnRe)J+'r * "3(1n )
[ [ wr w© WY

1 3(ln n)
T 2a 1 d3(In M) ) (21)
o wr

and the coefficients «a« , « and T by
o) wr

1’

-1

o = (1 +1;1_M2) (22)
[e] 2

=1 + ( 1)M2 (23)
@ = m (y -
 =2=- (24)
W n

In the next section the fluctuating flow variables are determined from solution of
equation (18),

Determination of Fluctuating Flow Variables

The flow fluctuation variables p', u', and T! are related to the measured
anemometer bridge voltage fluctuation e' through the locally linearized equa-
tion (18), which is wvalid only for small flow fluctuations. BAs previously shown by
Kovésznay (1953) and Morkovin (1956), the flow fluctuations can be determined from
equation (18) through variation of the single adjustable parameter Tr that appears
in sensitivity equations (19), (20), and (21). Since the probe can be operated only
at a single value of = at one time, only the mean and mean square fluctuating
anemometer bridge voltages can be considered relevant, Thus, the flow fluctuation
variables are actually obtained from the square and average of equation (18) as
follows:

e'2 2 9'2 2 u'2 2 Té
— = s‘J >+ 8, 5+ S; — t ZSpSuRpu - 2spsTRpT - ZSuSTRuT (25)
E_ 0 U T
o
where the correlation coefficients are given by Rpu = p'u'/puU, RpT = 'T;/pTo,

= armt
and RuT =u TO/UTO.

Equation (25) contains six unknowns, the mean square flow fluctuation variables
p', u'2, and T'2 and their mutual correlations R o and R aT* Solution
for these quantltles requires that the probe be operaged at a minimum of six probe
temperature overheats for constant mean free-~stream conditions and that the mean

10
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R .

free-stream Mach number be determined by an independent measurement to satisfy auxil-
iary equations (22) and (23) for « and a,. The resulting system of six linear
algebraic equations based on equation (25) can be written in matrix form as

A.ljxj = E; (26)
where 3 is a 6 x 6 matrix containing the sensitivity coefficient factors of -equa-
tion (25% Xj is a 1 %X 6 matrix containing the six unknown variables, and Ei

is a 1 X 6 matrix containing the six measured voltage ratios e'2/Eb2. The solution

for the flow variables can then be determined from equation (26) by solving for the

inverse matrix of Aij as shown by

X =—|-%—T-= A_1Ei : (27)

-1

where |A| denotes the determinant and A the inverse matrix of A, ..

13

Horstman and Rose (1977) reported that the LY matrix is nearly singular for
cylindrical probes. In the analysis that follows, %he matrix A for the wedge
probe is found to behave similarly. To demonstrate this behavior; analytical expres-
sions are developed for the various terms that appear in sensitivity equations (19),
(20), and (21). 1In the next several sections, the variation of the wedge probe sen-
sitivity coefficients is related to the flow parameters (i.,e., M and Re ) and to
the temperature loading Tor® ®

variation of Wedge Probe Sensitivity Terms With Flow Parameters

In this section, the various terms appearing in the sensitivity equations for

S, and S are analyzed with respect to their functional dependence on and
rglatlve variation with the flow parameters. The complete calibration data file for
probe Z is used for this purpose. The following analysis shows that relative to
other terms, the dependence of recovery temperature ratio on free-stream Reynolds
number (i.e., 3(ln 7)/3(1ln Rem)) can be considered negligible, but its dependence on
free-gtream Mach number should in general be retained. In addition, the dependence
of the Nusselt modulus on the overheating parameter 6 1is found to be significant
and must always be retained.

In figure 9, the dependence of 1 on free-stream Reynolds number is shown for
free-stream Mach numbers of 1.00, 1.41, and 1.99. For constant free-stream Mach num-
ber, mn appears to be independent of the free-stream Reynolds number., The variation
that does occur for each free-stream Mach number falls within the accuracy of the
temperature gauge (+0.1°C or 10.4 percent of reading) used to measure the stagnation
temperature T . This can be observed from the data scatter for those points near
the same free-stream Reynolds number. This scatter primarily occurs in the sonic
data at low Reynolds numbers. The results in fiqure 9 are consistent with those
obtained by Laufer and McClellan (1956) for cylindrical type sensors operating with
stagnation Reynolds numbers above 40.

11



The data in fiqure 9 do indicate, however, that the temperature recovery ratio
for the wedge probe depends on Mach number, In Figure 10, this dependence is exam-
ined by using the average values of 1 for each test Mach number, including the
subsonic Mach numbers of 0,50 and 0.90. These data are shown by the open round sym-
bols., A second order least square curve is fitted to these data to enable estimation
of the logarithmic derivative variation of 1 with Mach number. The least square
coefficients obtained are included in figure 10.. From this least square representa-
tion, the logarithmic derivative variation of 1 with Mach number shown in figure 11

is obtained.

As can be observed in figure 11, the general trend of the resulting variation
for the wedge probe is similar to that obtained by Morkovin (1956) for cylindrical
sensors with several notable exceptions. The wedge probe variation is more gradual,
the peak magnitude is much less, and the peak location occurs at a higher Mach num-
ber. The change in the peak location with Mach number can be partially explained by
the behavior associated with the probe body shocks; a more slender wedge probe than
that of figure 1 would produce a peak at even a higher Mach number, The relative
importance of the term -3(ln n)/3(ln M) associated with the wedge probe in fig-
ure 11 cannot be determined until the dependence of the Nusselt modulus on the tem-
perature overheating parameter 6 1is examined,

The dependence of the Nusselt modulus on free-stream Reynolds number in fig-
ures 8(a) through 8(c) is shown for one temperature overheat condition. Figure 12
shows how the wedge probe response depends on the temperature overheating parameter
6 = Tp/To’ which from equation (4) is related to the temperature overheat <t by

0 = (aTo)_1t + n . In figure 12, the probe % data obtained for all Mach numbers
examined (i.e., 0.5 < M < 2.0) are least squares fitted for each of the three tem-
perature overheats used in this study. These least square coefficients, A and B,
are tabulated in figure 12, The data show that the Nusselt modulus decreases with
increasing temperature overheating at a constant free-stream Reynolds number and
suggest the following relationship to account for the dependence on temperature over-

heat and Reynolds number:

Nu,(Re,, 8) = A(8) (Re)'/? + B(0) (28)

From equation (28), the logarithmic derivative of the Nusselt modulus with respect to
free-stream Reynolds number at a constant temperature overheat is given by

3(1n Nuo) _af, B(8) (29)
3(1n Rem) T2 Nuo

12



With equation (29), the functional dependence of 1 on Mach number can be investi-
gated as it appears, for example, in sensitivity equation (20) for Su. The relevant
ratio to be considered is :

9(ln n)/d3(1n M)
f(M,Re ,0) = - —— (30)
® o T d(ln Nu_)/3(In Re )

where by previous considerations the term 3(ln 7)/3(1ln Rem) can be neglected. The
function f£(M,Re_,0) 1is plotted in figure 13 for three temperature loadings that are
pertinent to the wedge probe operation. A constant free-stream Mach number of 1.25
was selected because this value maximizes the term d(ln 11)/3(ln M), as shown in
figure 11. It is apparent from figure 13 that the dependence of 1 on Mach number
should not in general be neglected, particularly when using low values of wedge probe
temperature overheat at free-stream Mach numbers near 1.25.

It is now possible to demonstrate an important functional difference between
wedge and cylindrical probes, which has an important influence on the solution for
the fluctuating flow variables in equation (18). With the dependence of n on
Reynolds number again neglected in equations (19) and (20), equations (28) and (29)
and the results in figure 11 can be used to estimate the velocity-to-density sensi-
tivity ratio Su/Sp for any given free-stream Mach and Reynolds numbers, This com-
puted ratio is shown in figqure 14 as a function of Mach number for a constant free-
stream Reynolds number of 20000 and three temperature loadings. The results in fig-
ure 14 only weakly depend on the free-stream Reynolds number, and the Re = 20000
was selected because it bisects the range of the current data. ®

As can be observed in figure 14, the wedge probe sensitivities to velocity and
to density are unequal except at one Mach number that depends on the probe
temperature loading. In contrast to this behavior, both Laufer and McClellan (1956)
and Horstman and Rose (1977) have shown that a cylindrical sensor has an equal
sensitivity to velocity and to density in the Mach number range above 1.3, This
difference in behavior is entirely attributed to the behavior of probe body shocks;
for a cylinder, the shock is essentially normal near the body producing subsonic
flow, and for the wedge, the shock is oblique producing supersonic flow.

The computed results above M = 2.0 in figure 14 should be interpreted cau-
tiously, since the wedge probe was not examined above this Mach number. The separa-
tion of this sensitivity ratio with temperature loading above M = 2.5 is strongly
influenced by the estimated behavior of the temperature recovery ratio n with Mach
number shown in figure 11. It is entirely possible, for example, that 17 could
become independent of Mach number beyond M = 2.,0. Then, Su/Sp would become inde-
pendent of temperature loading and monotonically increase with Mach number, as shown
by the solid curve in figure 14 for which Su/Sp = 0. Determination of the depen-
dence of 1 on Mach numbers greater than 2.0 represents an important area for fur-
ther research on the wedge probe,

To evaluate other sensitivity ratios involving the temperature sensitivity ST
given by equation (21), the dependence of the Nusselt modulus on temperature overheat
must be examined more explicitly. ‘Thus, the variation of the logarithmic derivative
3(1n Nuo)/b(ln 8) 1is considered next.
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A typical variation of the Nusselt modulus with 0 is shown in figure 15 for
the free-stream Mach number of 1.99, In this figure, the free-stream Reynolds number
appears as a parameter, and as expected from the data in figure 12, it accounts for
the largest variation in the data. It is evident that an increase in the free-stream
Reynolds number is accompanied by an increase in the dependence of Nusselt modulus

on 6.

The relative importance of 3(ln Nu )/3(ln O) appearing in sensitivity equa-
tion (21) for S can be gauged by takigg the logarithmic derivative of equa-
tion (28) with respect to 0 at a constant free-stream Reynolds number as follows:

3(1n Nu )
o"e(R
a(ln B) NuO [ € o

1/2 dA(0) dB(89)
) 50 + ae] (31)

Equation (31) makes use of the empirical coefficients A(6) and B(8) and explic-
itly displays the dependence on free-stream Reynolds number. The Nuo term appear-
ing in equation (31) can be calculated from equation (28). Figure 16 shows the
results obtained from equation (31) to estimate the term d(ln Nu )/d(ln 68). Only a
few free-stream Reynolds numbers are shown, but these bracket the range in this
investigation. The data obtained at these selected Reynolds and Mach numbers are
shown by the plotted symbols. They are determined by direct evaluation of the loga-
rithmic derivative from relevant data such as those shown in figure 15. As can be
observed in fiqure 16, equation (31) provides a reasonable estimate for the variation

of the logarithmic derivative of the Nusselt modulus with temperature overheat for
the entire Mach number and Reynolds number ranges investigated.

By using equation (31), the relative dependence of the Nusselt modulus on tem-
perature overheat can be estimated in the sensitivity equation (21) for S The
relevant ratio to be considered is

o(ln Nu )
- °
3(1ln 8) (32)

Eg 8(1n Nu ) L o(ln m) _
a d(ln Re ) T 20 T d(ln M) o
o) © wr o wWr

g(M,Rem, e) =

where again the term d(ln 7)/3(ln Re_) is neglected. The function g(M,Rem,G) is
plotted in fiqure 17 for the same three temperature loadings used in figure 13. As
can be observed in figure 17, the logarithmic derivative of the Nusselt modulus with
respect to temperature overheat is of increasing importance as temperature overheat
increases, and its relative contribution to the evaluation of ST cannot be
neglected. The selection of a free-stream Mach number of 1.25 in equation (29) pro-
duces a minimum absolute value with respect to Mach number for the function
g(M,Rem,e). This can be seen by recalling figure 11 for the dependence of 7 on
Mach number. Thus, the results of figure 17 represent a minimum contribution for the
term d(ln Nuo)/b(ln 0).
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To summarize the results of this section, the above analysis has shown that the
wedge probe dependence of 1 on Reynolds number can be neglected, but the dependence
of 1 on Mach number should be retained. The dependence of the Nusselt modulus on
temperature overheat was found to be significant and must always be retained. The
wedge probe sensitivities to velocity and to density were found to be unequal for the
entire Mach number range examined (i.e., 0.5 < M < 2).

The above results pertain to wedge probe Z. Even though the other wedge probes
show no significant deviation from these results, small differences in probe behavior
do occur. To minimize these differences in solving for the inverse matrix Al of
equation (27), each probe must be independently calibrated with respect to its par-
ticular dependence on Nuo(Rem,O) and n(M).

vVariation of Wedge Probe Sensitivities With Temperature Loading

In the preceding section, various terms in the sensitivity equations for Sps
S., and S were analyzed using the complete probe Z calibration data file., This
analysis provided the means to numerically estimate the three modal sensitivities for
any given free-stream Mach and Reynolds numbers. In this section, these sensitivi-
ties are examined to determine their relative variation with respect to probe film
temperature loading, as expressed by the variable Twr defined by equation (24).

The variation of the temperature loading provides the mechanism for solving
equation (18) for the flow fluctuation variables p', u', and Té. The accuracy of
the solution to equation (18) is integrally related to the variation of the sensitiv-
ity ratios Sqp/Syur  Sq/Spr, and Su/SP with temperature loading. When there is a
small variation of any of these sensitivity ratios with temperature loading, then the
transformation matrix Aij of equation (26) is nearly singular.

Figure 18 shows the estimated variation of the sensitivity ratio ST/Su with
temperature loading for several free-stream Mach numbers that bracket the range of
this investigation (i.e., 0.5 < M < 2). Figure 18(a) refers to results when
Re = 2500, and figure 18(b) when Re = 35000. The estimated sensitivity ratio is
obtained by using the analysis of thewpreceding section to determine the appropriate
logarithmic derivatives., The computed results in figure 18 show that the ratio
S /Su varies nonlinearly with temperature loading, the most rapid variation occur-
ring at lower values of 1 . The calculated data appear functionally similar, the
magﬁitude of ST/Su beingwﬁodified by a change in free-stream Mach or Reynolds
number.,

The variation of the sensitivity ratio S /Sp with the temperature loading is
similar as shown in figure 19. Figure 19(a) shows that this ratio depends only
weakly on free-stream Mach number. Figure 19(b) shows the dependence of this ratio
with free-stream Reynolds number as a parameter at a free-stream Mach number of 1.25.
In contrast to the variation of either ST/Su or ST/SP with temperature loading,
the S./Sp ratio depends much less on temperature loading, as shown in figure 20.
Figure 20(a) shows this dependence at Re = 2500. Figure 20(b) indicates that
increasing Reynolds number further weakens the dependence of the ratio §,/S on
temperature loading. P

The relatively weak dependence of Su/Sp on temperature loading requires fur-
ther investigation into the individual variation of the 84 and Sp sensitivities
with the parameter < . Figures 21(a) and 21(b) respectively show the dependence

of su and Sp on %5r for several free-stream Reynolds numbers at a constant
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free-stream Mach number of 1.25. Clearly, the wedge probe sensitivity to density
Sp is for all practical purposes independent of the parameter Twr® Inclusion of
this sensitivity in the transformation matrix A;; of equation (26) produces a
nearly singular matrix. Actual computations with”™ this estimated density sensitivity
produced irregular results for the resulting inverse matrix A~ of equation (27).
These results strongly suggest that, as shown by figure 21(b), the density sensitiv-
ity be treated as independent of <1 . 1In the next section, the above consideration
is implemented to demonstrate how ohe can interpret the wedge probe response,

RECOMMENDED METHOD OF SOLUTION FOR FLUCTUATING FLOW VARIABLES

On the basis of the results in the preceding section concerning the relative
independence of the sensitivity Sp to temperature loading, it is clear that given
the +0.4-percent accuracy of the current measurements, equation (18) cannot be solved
for the three independent modal fluctuations. However, by assuming that the sensi-
tivity Sp is independent of Tyrr aS supported by figure 21(b), equation (18) can
be solved for both velocity and temperature fluctuations to within an arbitrary fac-
tor. Two possibilities arise at this point.

Either the arbitrary factor can be left related to density fluctuations or it
can be related to static pressure fluctuations, With supporting optical measure-
ments, the density mode would be preferred; however, with supporting probe measure-
ments, the pressure mode would be preferred with the following advantages. Solution
of auxiliary equations (22) and (23) already requires an independent measure of the
mean static and total pressures to solve for the local free-stream Mach number, The
static pressure measurements can be extended to include the fluctuating part. addi-
tionally, in a free supersonic mixing layer, particularly a heated one, pressure
fluctuations are always smaller than density fluctuations because of the high modal
correlation between density and temperature, Thus, because of the higher sensitivi-
ties to velocity and temperature inherent to the wedge probe operation, as demon-
strated by figures 19 and 20, the arbitrary factor related to pressure can be assumed
small and can often be neglected to yield a first order solution to equation (18).
In this paper, the arbitrary factor is related to pressure fluctuations to take
advantage of this feature as shown below.

For a perfect gas, density fluctuations are related to pressure and temperature
fluctuations by

d(ln p) = d(ln P) - d(1ln To) (33)

Substituting equation (33) into equation (14) for d(ln p) and using equations (15),
(16), and (17), results in the following alternate expression for the logarithmic
variation of the free-stream Reynolds number:

m
d(ln Rem) = d(ln P) + a, d(ln U) - G +-Eg) d(1ln To) (34)
(o)
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With equation (34) substituted in equation (12) instead of equation (14) for
d(1ln Rem), equation (18) can be rewritten in terms of the fluctuating modes p', u’',
and Té as

Tl
e' p' u'’ o
B 5P *SUu T ST (35)

o2
0

where the sensitivities are given by

3(1ln Nu )
1 o

Sp =2 8(1n Re ) (36)

_ 1_- 1 3(ln 1)
Su =2 [11Sp "% t_ d(in M)] (37)
o wr
[ m a d3(ln Nu )
1 [e} 1 1 o)
Sp =5 <1 + _2>Sp+su+1: * 3an 6~ "o (38)
(e} wr

As shown previously in figure 9, temperature recovery ratio is relatively independent
of free-stream Reynolds number and is eliminated in the above sensitivity equations.
Comparing probe sensitivity equations (19), (20), and (21) with equations (36), (37),
and (38) indicates that the sensitivity to temperature increases to account for den-
sity fluctuations, while the sensitivity to velocity remains unchanged and the sensi-
tivity to pressure is equivalent to that for density. Thus, based on prior observa-
tions with density, the pressure sensitivity can be assumed to be independent of
temperature loading, and equation (35) after squaring and averaging can be written as

er? 5 ur2 u'T! ) T(')z
—2 = Su —2— - 2suST T + ST ) (39)
E U o T
b o)
where
2 .2
e| o el - el . 40
N o
pl
v = _ 1
eP EbSp P (41)
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Equation (39) can be solved as before by using equation (26) or by the graphical
modal analysis method of Kovésznzy {(1953). 1In either case, the fluctuating voltage
contribution due to pressure e! must be estimated from fluctuating static pressure
measurements or assumed to be negligible, If estimated, the associated pressure
measurements must be accomplished in real time to preserve the required phase infor-
mation between e' and eé .

The right-hand side of equation (39) can be put into a more convenient form as
previously shown by Kovésznzy (1953). With the following definitions,

<u> = u'2 u
6*2 = <e >2/s 2 <T > = T‘2 T (42)
c c T o) o o
’ 2,’ 2
= = my 1 ]
r Su/ST RuT u To u To
o
equation (39) can be given as
2

* 22 2

8 =<uwr” - 2R <u><T >r + <T > (43)
c uTo o o

Equation (43) has the same functional form as that for the cylindrical sensor.
Either Kovésznzy's graphical modal analysis method or eguation (26) can be used to
solve equation (43)., At least three temperature overheats are required to solve for
the coefficients <u>, <Ty >, and RuTo appearing in equation (43). A typical

example of application of equation (43) can be found in Seiner and vu (1981), who
studied the turbulence properties of an unheated shock-containing supersonic jet
plume, In their work, however, they assumed that e' = 0.

p

ASSOCIATED PROPERTIES OF HOT-FILM PROBES
Directional Response of Probe

A gquantity of great interest to theoreticians and experimentalists alike is the
variation of the turbulent Reynolds stress tensor (i.e., EEET) in supersonic free
jet and boundary layer flows. 1In certain fluid dynamic probléms, this stress tensor
may be obtained from a predetermined sampling method to obtain, for example, coherent
structure within the flow. Probes designed for Reynolds stress measurements have two
sensors angled to the probe axis, Thus, the directional response of the wedge probe

was examined.
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Only partial results have been obtained for the wedge probe; however some inter-
esting similarities exist between its directional response and that of the cylin-
drical hot-film probe., Figures 22 and 23 respectively show the yaw directional
response for the cylindrical and wedge probes. 1In both cases, the data are norma-
lized by data at the normal flow angle of ¢ = 0°. On the basis of the dimensions
given in figure 2, the cylindrical probe has an aspect ratio (L/D) of only 43.
According to the experimental results of Champagne, Sleicher, and Wehrmann, (1967),
heat conduction losses are of greater significance with small aspect ratio probes,
since the convective heat transfer is reduced by the factor (cos ¢). For very high
aspect ratio probes where 1/D > 600, they found that the cosine law is adequate to
describe the directional response of a hot wire. With small aspect ratios, their
data empirically correlated according to

Nuo(¢) = Nuo(c052¢ + k2 sin2¢) (44)

Their data were obtained at a low subsonic speed of 35 m/sec, and for probes with
L/D = 200 to 600, the parameter k respectively varied nonlinearly from 24 to 0.
The cylindrical hot-film data in figure 22 are compared with those given by equa-
tion (44), the solid line representing k = 0 and the dashed line representing

k = 0.95. The data at supersonic speeds closely follow the cosine law behavior
(i.e., k = 0), but the data at subsonic and sonic speeds show poor directional
response. This can be attributed perhaps to conduction losses, as suggested by
equation (44), or to peculiar transonic effects.

The wedge probe data of figure 23 alsoc show poor directional behavior when com-
pared with the cosine law at subsonic and sonic speeds., While one might expect the
wedge probe to have improved directional behavior at supersonic speeds, as does the
cylindrical probe, further investigation is required before use of dual sensor wedge
probes for Reynolds stress measurements,

Probe Frequency Response and Durability

The frequency response of the wedge probe was examined by performing the stan-
dard square wave insertion test while the probe was operated in a supersonic stream
under balanced conditions, With a 1-to-1 bridge ratio, this test indicated that the
frequency response was near 130 kHz for probe Z. In addition to this test, the
recent results of Seiner, McLaughlin, and Liu (1982) show that the response is at
least 40 kHz since these measurements demonstrate the existence of a universal mixing
layer spectrum for the initial mixing layer associated with the flow from the Mach 2
nozzle, The durability of the probe is remarkable compared with cylindrical sensors
from the standpoint that none of the electrical parameters of wedge probes degrade
with long-term use. Also wedge probes survive in severe flow environments, whereas
cylindrical probes are subject to failure in the turbulent shear zones of supersonic
flow.

Probe Limitations and Associated Difficulties
The method adopted for analysis of the wedge hot-film probe follows the local
linearization method introduced by Kovésznay (1950 and 1953) and Morkovin (1956) for

hot-wire probes. As such, the method is limited to turbulence measurements where the
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local turbulence intensity is a small percentage of the mean flow. Thus significant
errors can occur when the local turbulence intensity level exceeds 20 percent,

The major disadvantage of operating the wedge hot-film probe is that auxiliary
measurements are required to determine the local free-stream Mach number if not known
a priori. In addition, when pressure or density fluctuations cannot be assumed neg-
ligible, then the fluctuating static pressure must also be obtained concomitantly
with wedge hot-film measurements. Cylindrical hot-wire or hot-film probes have a
similar problem in the transonic flow range, but for supersonic free-stream Mach
numbers exceeding 1.3, these problems are avoided because the cylindrical probe has
the same sensitivity to density as to velocity and these sensitivities are indepen-
dent of the free-stream Mach number. Unfortunately, the cylindrical probe cannot
withstand high Reynolds number supersonic flows, like the ones Seiner and yu (1981)
and Seiner, McLaughlin, and Liu (1982) considered.

CONCLUSIONS

This report has examined the response obtained with a wedge hot-film probe in
transonic and low supersonic flow with high unit Reynolds numbers of 20 x 109 to
280 x 10® per meter, The results of this study showed that the wedge probe response
depends on Mach number through the entire flow range when correlated with a Reynolds
number based on stagnation temperature conditions. When correlated with a Reynolds
number based on the free-stream static temperature conditions, the dependence of the

probe response on Mach number is appropriately absorbed.

Based on this result, appropriate sensitivities to density, velocity, and tem-
perature fluctuations were derived for the wedge probe according to local lineariza-
tion method of Kovésznay and Morkovin. Examination of the variation of these sensi-
tivity coefficients with the flow parameters showed that it is possible to neglect
the dependence of the temperature recovery ratio on free-stream Reynolds number and
that unlike the cylindrical probe response above Mach 1.3, the wedge probe sensitiv-
ity to velocity is generally always larger than its sensitivity to density. This
result has a far-reaching effect on methods used to interpret the wedge probe voltage
response, since one is forced to solve for all three modal fluctuations.,

Examination of the variation of the wedge probe modal sensitivities with temper-
ature loading showed that the density sensitivity was virtually independent of tem-
perature loading. 1Inclusion of the density sensitivity in the probe transformation
matrix produced irregqular results that were directly attributed to the weak depen-
dence of the density sensitivity on temperature loading. On the basis of this find-
ing, it was concluded that until more accurate anemometry instrumentation becomes
available, the fluctuating flow variables can only be determined to within an arbi-
trary factor. The paper shows, however, that with a concomitant measure of the fluc-
tuating static pressure, both the fluctuating velocity and temperature modes can be
determined from the wedge hot-film voltage fluctuations. This represents the recom-
mended procedure to be used for analyzing the wedge hot-film response,

Heat conduction losses for the wedge hot-film probe were not explicitly treated
in this paper. However, a one-dimensional estimate for heat conduction losses along
with an empirical heat transfer law for hot wires with end conduction loss correction
indicated that the hot-film cylindrical sensor has small end conduction losses at
high Reynolds numbers. Extension of this estimate to the wedge probe geometry repre-
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sents an important area for further research, since even small conduction end loss
corrections can strongly influence the behavior of the wedge probe transformation
matrix,

The directional responses for both cylindrical and wedge hot-film probes indi-
cate that near sonic conditions, neither probe type produced adequate response for
Reynolds stress measurements. With supersonic free-stream Mach numbers and low
turbulence levels, the cylindrical hot-film probe exhibited good directional
response, Additional research is required to define the directional response of the
wedge probe beyond the sonic condition.

Even though the wedge probe requires auxiliary measurements to determine either
fluctuating static pressure or fluctuating density and to determine local free-stream
Mach number, it offers a means whereby the fluctuating velocity, temperature, and
their mutual correlation can be obtained with good frequency response (=130 kHz).
This represents an attractive feature, for these multiple modes have thus far been
modeled in high Reynolds number supersonic flows by empirical methods in the absence
of any confirming experimental data. The wedge hot-film probe represents a comple-~
mentary system to the laser velocimeter for supersonic flow measurements.

As a final note, the response of the wedge hot-film probe in transonic to low
supersonic flows should not be extrapolated to other wedge geometries and flow
regimes without careful investigation. 1In this paper, a 40° semivertex wedge angle
was studied, and the results indicated that its heat transfer properties depended on
Mach number even though the bow shock is detached throughout the supersonic flow
range investigated. Certainly one would expect that with increasing bow shock
angles, the wedge probe would begin to behave like the cylindrical probe whose bow
shock is always detached. It would be of substantial importance to examine a wedge
probe with a larger semivertex angle or one fitted with a rounded nose.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 2, 1983
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APPENDIX

CONDUCTION END LOSS ESTIMATE FOR THE CYLINDRICAL HOT-FILM PROBE

Figure 2 illustrates the cross section of cylindrical hot-film probe., The com-
plex geometry associated with the various material layers clearly suggests the use of
a numerical approach to solve for heat transferred by conduction. However, as is
shown below using a one-dimensional approximation, the numerical approach is not
necessary because the heat transferred by conduction represents a small fraction of
the total heat transferred for probes operating at high Reynolds numbers. The one-
dimensional estimate assumes that the primary mode of heat transfer by conduction is
through the thin nickel film., This assumption is justified on the basis that the
thermal conductivity of nickel is approximately 100 times that of the quartz fiber.
The energy equation for this problem is given by

12R nDzk 2

a o]d"T
—ZT[1 + af(T - Ta)] = ‘EDhc(T - Tr) - 2 dx2 (A1)

where R is the probe resistance at ambient temperature T, and the value selected
for D 1is the diameter representing an equivalent cross-sectional area for the
nickel film. 1In equation (A1), I represents the electrical current flowing through
the film, and T represents the temperature of the nickel along the cylinder axis

X, For the probe illustrated in figure 2, the equivalent probe diameter is

D = 11,5 ym. Solution of the above equation, subject to T = Tr at x =1L and
dr/dx = 0 at x = 0, provides the following estimate for heat transferred by convec-
tion Qc and conduction Qe

tanh( b L)
J_; (a2)

9 = 2mwrh b {1 - [———*L
c c 2 JETL
1
=2 5% b._Jb. tanh(|b.L (a3)
%205 2\1_1 an \’_1 .
where
2
4nlDh - 20I “R,
b, = P (A4)
7LD “k
[0}
2
Ip Ra[1 + al(T - 'I‘a)]
b, = > (a5)

27tbh - alI R
c p a
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APPENDIX

Both o and Qk can be solved for numerically by determining the convective heat
transfer coefficient h from the probe calibration data. These results are shown
in figure 24. The results in this figure show that in terms of the parameter

€ = Qk/(Qc + Qk)' the heat transferred by conduction is of less significance with
increasing probe Reynolds number and temperature overheat, The Reynolds number is
based on the actual 70-ym diameter of the hot-film probe. The one-dimensional model
estimate in figure 24 illustrates that heat conduction is relatively small in the
high probe Reynolds number. range of this study. The lower set of data in fig-

ure 24(c) is for the highest Mach number (i.e., M = 2.0).
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[RL is 2.57 Q for cylinder,

TABLE I.- HOT-FILM PROBES

for cylinder,

3.33 Q for wedge;
130 uym for wedge equivalent

D

is 70 mﬂ

Probe typea Designation Description a Rys Ly
0 mm
55R31 W Wedge 0.0046 10.42 1.00
55R32 Y Wedge .0044 10.37 1.00
55R32 Z Wedge .0041 10.98 1.00
55R01 3 Cylinder .0041 5.28 1.25

3pesignation of DISA Electronics.
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Figure 8.~ Continued.
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with free-stream Reynolds number,
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